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Abstract

The excellent real-world performance of deep neural networks has re-
ceived increasing attention. Despite the capacity to overfit significantly,
such large models work better than smaller ones. This phenomenon is
often referred to as the scaling law by practitioners. It is of fundamental
interest to study why the scaling law exists and how it avoids/controls
overfitting. One approach has been looking at infinite width limits of
neural networks (e.g., Neural Tangent Kernels, Gaussian Processes); how-
ever, in practise, these do not fully explain finite networks as their infinite
counterparts do not learn features. Furthermore, the empirical kernel for
finite networks (i.e., the inner product of feature vectors), changes sig-
nificantly during training in contrast to infinite width networks. In this
work we derive an iterative linearised training method. We justify itera-
tive lineralisation as an interpolation between finite analogs of the infinite
width regime, which do not learn features, and standard gradient descent
training which does. We show some preliminary results where iterative
linearised training works well, noting in particular how much feature learn-
ing is required to achieve comparable performance. We also provide novel
insights into the training behaviour of neural networks.

1 Introduction

Deep neural networks perform well on a wide variety of tasks despite their
overparameterisation and capacity to memorise random labels [Zhang et al.,
2017], often with improved generalisation behaviour as the number of param-
eters increases [Nakkiran et al., 2020]. This goes contrary to classical beliefs
around learning theory and overfitting, meaning there is likely some implicit
regularisation inducing an inductive bias which encourages the networks to con-
verge to well-generalising solutions. One approach to investigate this has been
to examine infinite width limits of neural networks using the Neural Tangent
Kernel (NTK) [Jacot et al., 2018, Lee et al., 2019], interestingly these often do
worse than standard neural networks, though with extra tricks they can perform
equivalently well or better under certain scenarios [Lee et al., 2020]. Similarly,
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despite their use for analysis due to having closed-form expressions for many
terms, they don’t predict finite network behaviour very closely in many regards.
For example, due to not learning features, they cannot be used for transfer
learning and the empirical NTK (outer product of Jacobians) changes signifi-
cantly throughout training whereas NTK theory states in the infinite limit that
this is constant. This raises important questions about in what ways they are
different, most of which can be summarised as how the use of feature learning
impacts the networks that can be learnt.

To work towards answering this question, we look at an interpolation be-
tween standard training and a finite analog of infinite training where we fix the
empirical NTK by performing weight space linearisation. One interpretation of
this is that we are varying the amount of feature learning allowed. We find that
essentially any amount of feature learning is enough to eventually converge to
a similar performing network, assuming learning rates are small enough.

1.1 Related Work

Li et al. [2019] create an enhanced NTK for CIFAR10 with significantly better
empirical performance than the standard one, however it still performs less well
than the best neural networks. Yang and Hu [2021] use a different limit to
allow feature learning, however neither of these give much insight as to why the
standard parameterisation doesn’t work well.

Lee et al. [2020] run an empirical study comparing finite and infinite networks
under many scenarios and Fort et al. [2020] look at how far SGD training is from
fixed-NTK training, and at what point they tend to converge. Lewkowycz et al.
[2020] investigate at what points in training the kernel regime applies as a good
model of finite network behaviour. Both find better agreement later in training.

Chizat et al. [2019] consider a different way to make finite networks closer to
their infinite width analogs by scaling in a particular way, finding that as they
get closer to their infinite width analogs, they perform less well empirically.

2 Problem Formulation

Consider a neural network fθ(x) parameterised by weights θ and a mean squared
error loss function1 L(Ŷ ) = 1

2 ||Ŷ − Y ||
2, where we minimise L (fθ(X)) for data

X and labels Y . We can write the change in the function over time under
gradient flow with learning rate η as:

1We use MSE for simplicity and compatability with NTK results here. While this is needed
for some NTK results, it does not effect the algorithms we propose where any differentiable
loss function can be used — see Appendix A
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θ̇t = −η∇fθt(X)>(fθt(X)− Y ) (1)

ḟθt(X) = −ηΘ̂t(X,X)(fθt(X)− Y ) where
[
Θ̂t

]
ij

=

〈
∂fθt(Xi)

∂θ
,
∂fθt(Xj)

∂θ

〉
(2)

It has been shown [Jacot et al., 2018, Lee et al., 2019, Arora et al., 2019] that
in the infinite width limit the empirical neural tangent kernel, Θ̂t, converges to a
deterministic NTK, Θ. This is a matrix dependent only on architecture and data
and does not change during training. From this perspective, training the infinite
width model under gradient flow (or gradient descent with a small step size) is
equivalent to training the weight-space linearisation of the neural network [Lee
et al., 2019]. This raises a number of interesting observations about why this
doesn’t work well in finite networks and what is different in them. This is likely
due to lack of enough random features whereas running gradient descent on the
full network allows features to be learnt, reducing the reliance on having enough
initial random features.

3 Iterative Linearisation

NTK theory says that if the width is large enough then training the weight-
space linearisation is equivalent to training the full network [Lee et al., 2019].
However in practise training the fully linearised network performs very poorly for
practically sized networks Lee et al. [2020]. In this section we propose iterative
linearisation in order to interpolate between training of the standard network
and the linearised network.

Consider standard (full batch) gradient descent on a neural network.

θt+1 = θt − ηφt(fθt(X)− Y ) where φt = ∇θfθt(X)>

Here we can think of this as two separate variables we update each step, the
weights θt and the features φt. However there is no requirement that we always
update both, giving rise to the following generalised algorithm:

θt+1 = θt − ηφlins
(
f lins,t (X)− Y

)
(3)

φlins = ∇θfθs(X)> (4)

where s = K ∗ b tK c. In addition, we write the linearised version of a neural
network fθ using its first order Taylor expansion at the weights θs as

f lins,t (x) = fθs(x) +∇θfθs(x)>(θt − θs)
Using this framework, when K = 1 this is simply gradient descent and when

K = ∞ it is fully linearised training. Other values of K interpolate between
these two extremes. See Algorithm 1 for more details. Note that we can also
generalise this to not be periodic in terms of when we update φ so we call this
fixed period iterative linearisation.
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Input: learning rate η, update periodicity K, pre-initialised
parameters θ0

for t = 1..epochs do
θt ←− θt−1 − η∇L(f lin(X));
if t mod K = 0 then

f lin(X)←− fθt(X) +∇fθt(X)>(θt − θ0);
end

end
Algorithm 1: Iterative Linearisation (fixed period)

3.1 Interpreting Iterative Linearisation

It is insightful to look a bit more closely at what is happening in Algorithm 1.
In the case of standard training of a linear model, (e.g. f lin(·)), the ‘features’
are fixed and the learning decides how to use those features. This is what is
happening in Equation (3) and with K = ∞, we don’t learn any new features
beyond the random ones we got through the initialisation of the network. Inter-
estingly we can say the same for infinite width networks, this idea that infinite
width networks don’t learn features is not new (see Yang and Hu [2021] for work
trying to avoid this pitfall), but the finite analogy gives us a new perspective on
what is happening in Algorithm 1. We then call Equation (4) feature learning,
noting that the feature learning cannot be happening in Equation (3). From
this interpretation, the Jacobian φt are the features we are using at time t and
K tells us how frequently to update features, putting a limit on the frequency
of feature learning updates.

4 Results

To examine the effect of increasing K, or equivalently reducing the feature
learning frequency, we run a number of experiments on MNIST and CIFAR10
with a slightly larger variant of LeNet [LeCun et al., 1998] with 50 channels in
each convolutional layer and softmax output. The purpose of these experiments
is not to achieve amazing performance on the datasets (it only gets to ∼ 50%
for CIFAR10) but to examine how training changes as the learning rate η and
update frequency K changes. For these experiments we note that unlike the
general NTK theory, no process of our derivation relies on the use of MSE so
we instead use cross-entropy loss as is standard for image classification. We
additionally include the softmax in the loss function so it is not linearised by
the algorithm, this both means that we continue to have an output for which
taking the cross-entropy loss is meaningful as well as avoiding numerical issues
caused by having the linearisation happening in the middle of the logsumexp
trick.

Figure 1 shows the results of these experiments. For MNIST, all K ≤ 100
follow almost the exact same learning trajectory, converging very quickly and
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Figure 1: Iterative linearisation results on MNIST and CIFAR10 with learning
rates of 1e-4 and 1e-5
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Figure 2: Iterative linearisation on CIFAR10 with large K

not saturating the amount learnt from each set of features before updating.
For K = 1000, it can be seen that the training levels off each time before φ is
updated. This shows that the we can get close to 100% accuracy on MNIST by
only updating the features from their initialisation twice (all except K =∞ are
within a 0.4% range at the end of training). From this we can conclude that the
initialisation of a neural network with this architecture creates features that are
not too far from what is needed to solve MNIST. Compare this with CIFAR10
(learning rate 1e-5) where it still only takes a few feature vector updates to
reach the performance of K = 1 however this is a much lower accuracy. It is
still unclear from these experiments how the few updates necessary interacts
with different architectures on the same dataset.
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Comparing CIFAR10 with learning rates of 1e − 4 and 1e − 5 also gives
interesting conclusions. For η = 1e − 4, training diverges as soon as K goes
above 5, and is unstable even for K = 5, whereas for η = 1e− 5 training stays
stable for all K up to K = 20000 (see Figure 2). Note that this is not simply
because it’s moving less far as this is a 10x reduction in the step size but a 4000x
increase in K. We include SGD training for comparison, noting that plotting
per-step rather than per-epoch gives similar performance to GD training and so
we should expect most runs to reach 60% accuracy if run for twice as long.

5 Conclusion

This paper has proposed iterative linearisation, a new training algorithm that
interpolates between gradient descent on the standard and linearised neural net-
work as a parallel infinite width vs finite networks. We show that, at least in
the case of a LeNet-like architecture with small learning rates, any amount of
features learning is enough to converge to a similar performing model. This pro-
vides an important step towards understanding feature learning and the distinc-
tion between how infinite and finite width networks learn. Better understanding
how networks change with large amounts of parameters has important connec-
tions to empirical phenomena such as explaining deep double descent [Nakkiran
et al., 2020].

5.1 Future Work

It is important to do more rigourous empirical investigations to confirm these
results, in particular to scale up to larger models in order to disentangle the im-
pact of iterative linearisation training from the fact that this architecture will
never do particularly well on CIFAR10. This is also important to better under-
stand under what architectures/learning rates/frequencies iterative linearisation
training is stable.

Another direction is to better understand the types of solutions that itera-
tive linearisation finds for various values of K. This will shed light onto how
the inductive bias is changing, in particular understanding if all K < ∞ find
similar solutions and the infinite width limit is a step change similar to the test
performance in the experiments here, or if this is a gradual change towards the
solutions which don’t learn features.

Finally, we only consider fixed period iterative linearisation here where we
update the feature vector φ at regular intervals. However Fort et al. [2020]
showed that the empirical NTK changes faster earlier in training so it makes
sense for K to be more adaptive if this was to be used directly for training.
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A Iterative linearisation with a general loss func-
tion

In Section 3 we show how to get to iterative linearisation from standard gradient
under mean squared error loss. The use of mean squared error is more instructive
due to its similarities with NTK results, however it is not strictly necessary. For
completeness we include here the same idea but for a general loss function L(·).

Standard gradient descent on a function fθ(·) parameterised by θ, with step
size η and data X can be written as

θt+1 = θt − η∇θL(fθt(X))

We can apply the chain rule, resulting in

θt+1 = θt − η∇θfθt(X)L′(fθt(X))

Where L′(·) is the derivative of L(·) (in the case of mean squared error, this
is the residual: L′(Ŷ ) = Ŷ −Y ). Now again using φt = ∇θfθt(X), we can write
this as

θt+1 = θt − ηφtL′(fθt(X))

With a similar argument to Section 3, we note that we don’t need to update
the features φt every step, resulting in the following formulation.

θt+1 = θt − ηφlins L′
(
f lins,t (X)− Y

)
(5)

φlins = ∇θfθs(X) (6)

where s = K ∗ b tK c
This now lets us use softmax followed by cross-entropy in the loss L(·) while

maintaining the same interpretation, as we do for the MNIST and CIFAR10
results.
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