
Optimal Torpedo Scheduling

Adrian Goldwaser1,3 and Andreas Schutt2,3

1 The University of New South Wales, Australia
2 The University of Melbourne, Australia

3 Decision Sciences, Data61, CSIRO, Australia
adrian.goldwaser@gmail.com,andreas.schutt@data61.csiro.au

Abstract We consider the torpedo scheduling problem in steel produc-
tion, which is concerned with the transport of hot metal from a blast
furnace to an oxygen converter. A schedule must satisfy, amongst other
considerations, resource capacity constraints along the path, the loca-
tions traversed and the sulfur level of the hot metal. The goal is first
to minimize the number of torpedo cars used during the planning hori-
zon and second to minimize the time spent desulfurizing the hot metal.
We propose an exact solution method based on Logic-based Benders De-
composition using Mixed-Integer and Constraint Programming, which
optimally solves and proves, for the first time, the optimality of all in-
stances from the ACP Challenge 2016 within 20 minutes. In addition,
we adapted our method to handle large-scale instances. This adaptation
optimally solved all challenge instances within one minute and was able
to solve instances of up to 100,000 hot metal pickups.

1 Introduction

Steel production is a complex process of sequential stages from raw materials to
a final product in the form of, e.g., wire plate coils. In the first stage, the iron
making, raw materials are melted in a blast furnace. In the second stage, the
steel making, the hot metal is loaded in torpedo cars, or torpedoes, transported
to different locations for improving its quality, and finally brought to an oxygen
converter, in which it is poured. Once at the oxygen converter, the hot metal is
further refined before the last two stages of continuous casting and hot trip mill.
This work focuses on the rotation of the torpedoes between the blast furnace
and oxygen converter in the steel making stage. At the steel making area, there
are a number of blast furnaces producing hot metal of different qualities. At
certain times or events, the hot metal in the blast furnace has to be loaded into
a torpedo. Then the torpedo moves on a rail network to different locations for
improving the quality of the hot metal if needed. After that, the hot metal is
transported to the oxygen converter and poured into it at a pre-defined event
time. Now, the empty torpedo is available for the next pick up of hot metal.

We study the torpedo scheduling problem that was proposed by Schaus et
al. [12] for the ACP Challenge 2016. This problem focuses on the assignment
of blast furnace events to oxygen converter events and the scheduling problem

dsoc fb

bfeb

∞ 1

4 34
1, 1

20, ∞

1, 12, 1

4, 1

1, 1

Figure 1. The graph for Ex. 1.

bf 1

5,3

2

15,3

3

25,3

4

47,2

5

70,3

oc 6

30,2

7

57,1

8

62,1

9

80,3

time

ep

Figure 2. A small example of a torpedo scheduling problem.

of transporting the hot metal through different locations while satisfying all
scheduling constraints and the quality constraint, sulfurization level, on the hot
metal. Figure 1 shows the rail network considered. There are five different lo-
cations: blast furnace (bf), full buffer (fb), desulfurization station (ds), oxygen
converter (oc), and empty buffer (eb). The full and empty buffers are waiting
areas for full and empty torpedoes, whereas at the desulfurization station the
sulfur level of the hot metal can be reduced by chemical processes. Each location
has a torpedo capacity, which is shown above the node. Each link or edge has a
minimal transition time and a torpedo capacity, which is shown next to the edge
in the same order. The dashed edge from bf to eb represents the emergency pit,
in which hot metal can be dumped if required. The objective is a lexicographical
one, first to minimize the number of torpedoes and second to minimize the total
time spent at the desulfurization station by torpedoes.

Example 1. Figure 2 shows a small problem with five blast furnace 1, 2, . . . , 5 and
four converter events 6, 7, 8, 9. Each converter event is specified by its due date
and (maximal) sulfur level given above or below its node. We assume that the
loading time at the blast furnace, the unloading time at the oxygen converter, and
the time to desulfurize the hot metal by one level are 5 time units. The transition
times between different locations and the torpedo capacities are shown in Fig. 1,
e.g., the blast furnace bf has torpedo capacity 1 and the emergency trip (dashed
line) a transition time of 20 and no capacity limit. A solution is depicted by the
arrows between the events, which shows the usage of three torpedoes. The first
torpedo serves the events 1, 6, 4, 8, the second one only 2, and the third one 3,
7, 5, 9 in this order. For fulfilling the demands for oxygen converter events 6, 7,
and 8, a total of 20 time units have to be spent for desulfurization. ut

To best of our knowledge, the torpedo scheduling problem we study was pro-
posed at the ACP Challenge 2016. From ten teams, who took part, we are only

aware of the publication of the winning team [8] and the third placed team [4].
Kletzander and Musliu [8] propose a two-stage simulated annealing approach.
The first stage minimizes the number of torpedoes by tracking the maximal
number of torpedoes simultaneously used at any one time, whereas the second
stage minimizes the desulfurization time. They relax some constraints, but add
penalty terms to their objective. One iteration of the method takes between four
to ten minutes time for the ACP challenge instances. They run 50 iterations
to get their best results, which is a runtime of more than 3 hours. Geiger [4]
proposes a Branch-and-Bound method, which branches over the assignments of
converter events to blast furnace events in a depth first manner with chrono-
logical backtracking. In each node, a resource-constrained scheduling problem is
solved by a serial generation scheme with variable neighborhood search [3]. In
order to reduce the search tree size, Geiger removes infeasible assignments in a
preprocessing step and after a solution is found. Both methods [4,8] are incom-
plete and thus cannot prove optimality of an instance, unless the lower bound
of the objective is the optimal value.

Different aspects on the torpedo scheduling problem have been studied in the
literature: the routing of torpedoes through the rail network while minimizing
the transportation time of the hot metal [2,7,10], the molten iron allocation
problem [13], the molten scheduling problem [6,9], and the locomotive scheduling
problem [14]. All those works use different solution methods such as local search,
mixed integer programming, and column generation, but none use Logic-based
Benders Decomposition [5] and Constraint Programming (CP) as we do in the
present paper.

We propose a Logic-Based Benders Decomposition [5] method, in which the
assignment problem and the lexicographical objective is handled in the master
problem. The remaining scheduling is partitioned, if possible, and solved mini-
mizing the desulfurization time. The master problem is solved by a Mixed Inte-
ger Programming (MIP) solver whereas the scheduling problems by CP solver
with Nogood Learning applying Lazy Clause Generation (LCG) [11]. In prepro-
cessing, we simplify the problem by removing symmetries. To the best of our
knowledge, our method is the first published complete method for the torpedo
scheduling and proves the optimality of found solutions of the simulated anneal-
ing approach [8] for all ACP challenge instances, in an even shorter runtime.
We modified our method for handling large scale problems, but with the price
of losing optimality. The modified method improved the runtime by orders of
magnitude and was able to solve instances with 100,000 events in 70 minutes.

2 Torpedo Scheduling

The torpedo scheduling problem consists of a set of blast furnace events N =
{1, 2, . . . , n}, a set of (oxygen) converter events M = {n+ 1, n+ 2, . . . , n+m},
and a set of locations L = {bf, fb, ds, oc, eb} in the production plant. In addition,
the torpedo graph G = (L,P) is a directed graph which specifies the two possible
traversals of the torpedoes through the plant. The oxygen converter trip delivers

the hot metal to the converter and visits the locations in this order eb, bf, fb,
ds, oc, and eb, whereas the emergency pit trip dumps the hot metal at the
emergency pit and visits the locations in this order eb, bf, and eb. Thus, P =
{(eb, bf), (bf, eb), (bf, fb), (fb, ds), (ds, oc), (oc, eb)}.

Each location l ∈ L has a torpedo capacity capl where capbf = 1 and capep =
∞. We extend this notation for edges p ∈ P , which is capp. All edges p ∈
P \ {(bf, eb)} have a unit capacity capp = 1, whereas cap(bf,eb) =∞. A torpedo
traversing the edge p requires a minimal transition time of ttp.

Each blast furnace event i ∈ N is characterized by a due date, ddbfi ∈ N0,
at which hot metal is picked up by exactly one empty torpedo, and a sulfur
level, sulbfi ∈ {1, 2, . . . , 5}, of the hot metal. Each oxygen converter event j ∈M
has a due date, ddocj ∈ N0, at which hot metal from exactly one full torpedo is
poured into the converter, and a maximal sulfur level, sulocj ∈ {1, 2, . . . , 5}, of

the hot metal. Loading of a torpedo takes durbf ∈ N time periods at the blast
furnace, while unloading takes duroc ∈ N time periods at the oxygen converter.
Reducing the sulfur level of hot metal by one unit requires durds ∈ N time
periods at the desulfurization station.

Following [8], a torpedo run i is either a converter or emergency pit trip.
In the former case, it is specified by variable departure times depli, variable
arrival times arrli for locations in {eb, bf, fb, ds, oc}, and the variable converter
event oci ∈ M , that it serves. For the latter case, it is specified by the variable
departure and variable arrival times for only the locations eb and bf. We denote
by epi whether it is a converter trip epi = 0 or an emergency pit trip epi = 1.

Definition 1 (Torpedo Scheduling Problem). A torpedo scheduling prob-
lem consists of a triplet (N,M,G = (L,P)). A solution S = (1, 2, . . . , n) is a
vector of n torpedo runs, in which the i-th run picks up the hot metal of the
i-th blast furnace event, matches the blast furnace event to an oxygen converter
event or an emergency pit trip, and assigns all corresponding arrival and depar-
ture times. A solution satisfies the capacity constraints on each location (1) and
on each edge (2),∑

i∈S:arrli≤t<depl
i

1 ≤ capl ∀l ∈ L,∀t ∈ N0 (1)∑
i∈S:depl

i≤t<arrki
1 ≤ cap(l,k) ∀(l, k) ∈ P,∀t ∈ N0 (2)

the minimal transition times for oxygen converter (3) and emergency pit trips (4),

arrki − depli ≥ tt(l,k) ∀i ∈ S : epi = 0,∀(l, k) ∈ P \ {(bf, eb)} (3)

arrki − depli ≥ tt(l,k) ∀i ∈ S : epi = 1,∀(l, k) ∈ {(eb, bf), (bf, eb)} (4)

the loading constraints at the blast furnace (5), the unloading constraints (6),
and the maximal sulfurization level (7) at the oxygen converter.

arrbfi ≤ ddbfi ∧ ddbfi + durbf ≤ depbfi ∀i ∈ S (5)

arroci ≤ ddococi ∧ ddococi + duroc ≤ depoci ∀i ∈ S : epi = 0 (6)

suli −
⌊
depdsi − arrdsi

durds

⌋
≤ suloci ∀i ∈ S : epi = 0 (7)

All torpedoes, which are identical, are located at eb at time 0. Here, we are
interested in a solution that minimizes two objective functions in lexicographic
order. The primary objective (8) is to minimize the number of torpedoes used,
which can be stated as minimizing the maximal number of “active” torpedo runs
at any time [8,4]. The secondary objective (9) is to minimize the total time spent
at the desulfurization station.

min maxt∈N0 |{i ∈ S | depebi ≤ t ∧ t < arrebi }| (8)

min
∑

i∈S:epi=0
depdsi − arrdsi (9)

Note that the solution does not provide an assignment of individual torpedoes
to the torpedo runs. But such an assignment can be computed in polynomial
time with respect to the number of torpedo runs using a stack for torpedoes
in the empty buffer and a return queue of torpedoes sorted ascending by their
arrival (return) times to the empty buffer. The algorithm would iterate over
due dates of blast furnace events and the arrival times in the return queue in
chronological order. Depending on the case, it either pops a torpedo from the
stack and pushes it into the return queue or vice versa.

Moreover, as already observed in [8,4] the possible oxygen event matches for
a blast furnace event can be reduced by simply calculating the minimal travel
time including a minimal time for desulfurization from the blast furnace to the
oxygen converter. We denote X = {(b, o) ∈ N ×M | ddbfb + tt(bf,fb) + tt(fb,ds) +

tt(ds,oc) +durds ·max(0, sulb−sulo) ≤ ddoco } the set of possible matchings of blast
furnace to oxygen converter events. In addition, they also observed that there is
no reason to delay a departure of a torpedo from the blast furnace in the case
of an emergency trip due to the uncapacitated path (bf, eb) and empty buffer.
Thus, we can fix depbfi = ddbfi + durbf and arrebi = depbfi + tt(bf,eb) if the torpedo
run i goes to the emergency pit.

Example 2. Given the example from Ex. 1. Then, X = {(1, 6), (1, 7), (1, 8), (1, 9),
(2, 7), (2, 8), (2, 9), (3, 7), (3, 8), (3, 9), (4, 8), (4, 9), (5, 9)} and the departure times
at bf respectively are 10, 20, 30, 52, and 75 for events 1, 2, 3, 4, and 5 if they go
to the emergency pit. Note that only bf event 1 can deliver hot metal for event
6, we leave such simple reductions to the solver.

3 Preprocessing

Before solving the problem, we perform preprocessing steps in order to simplify
the problem and setup the structure needed for our solution approach.

3.1 Departure Times from the Oxygen Converter

The empty buffer has unlimited capacity, this means that is it never suboptimal
to get an empty torpedo there earlier rather than later as it can be reused earlier,

Algorithm 1: Computation of departure times from the oxygen converter.

Input : M an array of m oxygen converter events sorted in chronological order.
1 j; = M [1]; depOC[j] := ddocj + duroc; arrEB[j] := depOC[j] + tt(oc,eb);
2 for jj := 2 to m do
3 j := M [jj];
4 depOC[j] := max(arrEB[M [jj − 1]], ddocj + duroc);
5 arrEB[j] := depOC[j] + tt(oc,eb);

it frees space at the oxygen converter earlier, and clears the path from the oxygen
converter to the empty buffer earlier. Thus, an empty torpedo should leave the
oxygen converter as early as possible, which is the latest time of the completion
unloading the torpedo, i.e., ddoci + duroc, and the arrival time of the previous
torpedo at the empty buffer from the oxygen converter, i.e., arrebj .

Since the due dates for the oxygen converter events are known a priori, the
departure dates from the oxygen converter and the arrival times to the empty
buffer can be computed in linear time with the respect to the number of those
events, if the events are given in chronological order, as shown in Alg. 1. Note
that the order of torpedoes serving oxygen converter events remains unchanged
by the algorithm. It is obvious that the following holds.

Proposition 1. Algorithm 1 computes the earliest departure times for each oxy-
gen converter event without changing the order of their corresponding earliest
arrival times at the empty buffer and without creating an overload on the path
between both locations.

Example 3. Given the example from Ex. 1 from page 2. Then Alg. 1 respectively
computes departure times 35, 62, 67, and 85 for the oxygen converter events 6,
7, 8, and 9. ut

3.2 Arrival Times at the Blast Furnace

A similar observation to the departure times at the oxygen converter can be seen
for the arrival times at the blast furnace. Since the empty buffer is uncapacitated
and the hot metal cannot be picked up before its due date, it is never suboptimal
to get an empty torpedo there later than rather earlier.

Algorithm 2 is symmetric to Alg. 1 for the arrival times at the blast furnace.
It computes the times in reverse-chronological order of the blast furnace events.
With similar arguments as in the oxygen converter case, the following claims
hold.

Proposition 2. Algorithm 2 computes the latest arrival time for each blast fur-
nace event and their latest departure time from the empty buffer without creating
an overload on the path between both locations.

Note that for torpedo runs using the emergency pit, we can now fix its remain-
ing departure and arrival times. Thus, we only have to decide which run is an
emergency pit trip.

Algorithm 2: Computation of arrival times at the blast furnace.

Input : N an array of n blast furnace events sorted in chronological order.
1 i := N [n]; arrBF [i] = ddbfi ; depEB[i] := arrBF [i]− tt(eb,bf);
2 for ii := n− 1 down to 1 do
3 i := N [ii];

4 arrBF [i] := min(depEB[N [ii + 1]], ddbfi);
5 depEB[i] := arrBF [i]− tt(eb,bf);

Algorithm 3: Computation of a backward matching.

Input : N an array of n blast furnace events sorted in chronological order.
Input : M an array of m oxygen converter events sorted in chronological order.

1 dep := Alg. 1(M);
2 for o = 1 to m do bm[o] :=∞;
3 bb := 1; oo := 1;
4 while bb ≤ n and oo ≤ m do
5 b := N [bb]; o := M [oo];

6 if dep[o] + tt(oc,eb) + tt(eb,bf) ≤ ddbfb then bm[o] := b; bb++; oo++ ;
7 else bb++ ;

Example 4. Given the example from Ex. 1 from page 2. Then Alg. 2 respectively
computes arrival times 4, 14, 24, 46, and 69 for the events 1, 2, 3, 4, and 5. ut

Since the blast furnace and oxygen converter events are independent of each
other, hence it follows that an optimal solution exists, which has the same arrival
and departure times for the corresponding events as computed in Alg. 1 and 2.
Thus, fixing the corresponding variables to those times removes symmetries from
the problem.

3.3 Backward Matching

We introduce the concept of backward matches, i.e., matches from oxygen con-
verter events to blast furnace events. The meaning of such a match is that a
torpedo fulfilling the demand for the oxygen converter event o ∈ M is used to
serve the request for the blast furnace event b ∈ N . In other words, the torpedo
used for o is reused for b.

Since the torpedoes are identical and each blast furnace event requires exactly
one torpedo, it does not matter which empty torpedo serves the event if more
than one can be at the blast furnace in time. Algorithm 3 computes a backward
matching in linear time with respect to the number of blast furnace events, when
these events and the oxygen converter events are already sorted. Let bm : M →
N ∪ {∞} denote the backward matching returned by Alg. 3. Note that some
of the last oxygen converter events can not be matched with any blast furnace
event. We represent this case by a match to ∞.

bf 1

5,3

2

15,3

3

25,3

4

47,2

5

70,3

oc 6

30,2

7

57,1

8

62,1

9

80,3

time

Figure 3. The backward matching for Ex. 1.

Example 5. Given the example from Ex. 1 from page 2. Then Alg. 3 computes
the backward matching as shown by the arrows in Fig. 3, in which events 8 and
9 do not get a match. ut

Theorem 1. Let (N,M,G) be a torpedo scheduling problem. Then there exists
an optimal solution S using the backward matching computed by Alg. 3 for the
reuse of torpedoes.

Proof. Let S′ be an optimal solution. We can assume that S′ uses the departure
times at the oxygen converter computed by Alg. 1. We will construct a solution S
by swapping torpedoes in S′. Consider the first blast furnace event b1 which
uses a torpedo t1 other than the assigned one t2 in the backward matching bm.
Without loss of generality, we assume that b2 is the next blast furnace event
that t2 serves. Since b1 is the earliest event that t2 can serve after finishing its
oxygen converter run, it holds ddbfb1 ≤ ddbfb2 . Now, we distinguish regarding the
origin of torpedo t1. If the torpedo t1 was never used before or returns from
an emergency pit run then, clearly, we can swap the torpedoes for b1 and b2. If
the torpedo t1 returned from an oxygen converter trip then the departure time
from the oxygen converter must be later than for t2, otherwise S′ would deviate
earlier from the backward matching. Since Alg. 3 matched t2 with the earliest
possible blast furnace event, it holds that ddbfb1 ≤ dd

bf
b2

. Therefore, the torpedoes
can be swapped. ut

Given a backward matching, it divides the blast furnace events into the set
of matched events, i.e., V = bm(M) \ {∞}, and the set of unmatched events,
i.e., U = N \ bm(M). Our solution method presented in the next section will
extend this matching by matching torpedoes used for an emergency pit trip to
unmatched events. As all departure and arrival times are known in the case of
those trips, we reduce possible matchings to R = {(i, j) ∈ N×U | arrbfi +durbf+
tt(bf,eb) + tt(eb,bf) ≤ arrbfj }.

Example 6. Given the example from Ex. 5. Then, V = {4, 5} and U = {1, 2, 3}.
The time cost for an emergency trip is from bf (including loading) back to it is
5+20+1 = 26. Thus, no torpedo serving any blast furnace events would be able
to return to bf in time for one of the unmatched one, i.e., R = ∅. Therefore, the
backward matching cannot be extended.

4 Solution Method

At first, we preprocess an instance for determining the various arrival and depar-
ture times, and the backward matching bm as described in the previous section.
After that, we start the Benders decomposition, which alternates between solv-
ing the master and scheduling problems until an optimal solution is found. The
master problem is formulated as a MIP, in which each oxygen converter event
is assigned to a torpedo run, unmatched blast furnace events are matched with
emergency pit trips, and the lexicographic objective of the problem is minimized.
Then the remaining scheduling problem is split into smaller sub-problems using
the optimal matching from the MIP solution. Each sub-problem is then solved
as a constraint optimization problem minimizing the total time spent at the
desulfurization station. If all sub-problems are feasible and the total time spent
at the desulfurization station equals the corresponding lower bound in the MIP
solution then we have found a globally optimal solution. If some sub-problems
are not feasible, we compute minimal Benders cuts, add them to the MIP prob-
lem, and re-optimize the MIP. If some sub-problems require extra desulfurization
time, we add optimality cuts, which forces the objective to take into account the
extra desulfurization time, and re-optimize the MIP.1 The optimality cuts can
also make the MIP problem infeasible. In this case, it proves that the last found
solution was the optimal one.

4.1 MIP model

The MIP model tries to find the mapping of blast furnace events to converter
events and reuse of torpedoes after emergency trips such that the number of
torpedoes is minimized and for the minimal number of torpedoes, the lower
bound on the desulfurization time is minimized.

Contrary to [8,4], the idea of counting the number of torpedoes used is not
based on how many torpedoes are doing an emergency pit or an oxygen converter
trip at the same time, but rather to model it via the reuse of torpedoes. The
backward matching bm already provides the reuse of torpedoes used for oxygen
converter trips. Solving the MIP model just extends this backward matching for
torpedoes used for emergency trips.

Besides the binary variables epi from the torpedo run, the MIP model uses the
following binary variables. For each (i, o) ∈ X, we create a variable xio ∈ {0, 1}
expressing whether the torpedo run i serves the demand of the oxygen converter
event o. For each (i, j) ∈ R, the variables rij ∈ {0, 1}models whether the torpedo
from torpedo run i is reused for the blast furnace event j.

min durds · n · obj1 + obj2 (10)

s.t. obj1 = |U | −
∑

(i,j)∈R
rij (11)

1 Note that this case never occurred for generated instances and was only tested on
handcrafted instances.

obj2 =
∑

(i,o)∈X
xio ·max(0, suli − sulo) · durds (12)∑

(i,o)∈X
xio = 1 ∀o ∈M (13)

epi +
∑

(i,o)∈X
xio = 1 ∀i ∈ N (14)∑

i∈N
epi = N −M (15)∑

(i,j)∈R
rij ≤ epi ∀i ∈ N (16)∑

(i,j)∈R
rij ≤ 1 ∀j ∈ U (17)

Constraint (10) states the objective of the MIP, which is split into two parts. The
first part (11) models the minimization of the number of torpedoes, by maximiz-
ing the number of reused torpedoes for unmatched blast furnace events. We scale
this objective by the product of number of blast furnace events and the duration
for desulfurizing the hot metal by one sulfur level in order to account for the
lexicographic problem objective. Constraint (13) ensures each oxygen converter
event is matched by one blast furnace event, whereas (14) matches each blast
furnace event to an oxygen converter event or emergency trip. Constraint (15)
ensures that there are the right number of emergency pit trips. Constraint (16)
models that a torpedo used for an emergency trip can be reused for an un-
matched blast furnace event, whereas (17) ensures that at most one torpedo is
reused for each unmatched blast furnace event. Note that the reuse of torpedoes
for an oxygen converter trip is already determined by the backward matching bm,
and thus can be left out of the model.

A MIP solution provides not only the matching of torpedo runs to oxygen
converter events and the matching for the reuse of torpedoes, but also a lower
bound on the desulfurization time, which is used as a quality measurement for
the scheduling solution.

4.2 The CP model

Once, we have a mapping of blast furnace to oxygen converter events, we can
split the remaining scheduling problem into several smaller ones. The idea is to
split the problem at those blast furnace events serving an oxygen converter event,
that do not interfere with any previous torpedo runs serving oxygen converter
events. Algorithm 4 computes all sub-problems.

Example 7. Given the example from Ex. 1 from page 2. Algorithm 4 will split
the problem into three sub-problems as depicted in Fig. 4.

Each sub-problem is then modeled as a constraint optimization problem using
the same model, but restricted to torpedo runs in the sub-problem, as in Def. 1 on
page 4 except for the torpedo capacity constraints and an additional constraint
enforcing an upper bound on the departure times at the blast furnace for avoiding
an overload (18).

min
∑

i∈S′
depdsi − arrdsi

Algorithm 4: Computation of the sub-problems.

Input : N an array of n blast furnace events sorted in non-decreasing order of
the due dates.

Input : oc a mapping from blast furnace events to oxygen converter events
or ∞.

1 latestDepDS := −∞; A := ∅; B := ∅;
2 for ii := 2 to n do
3 if oc(N [ii]) =∞ then continue;

4 i := N [ii]; earliestArrDS := ddbfi + tt(bf,fb) + tt(fb,ds);
5 if latestDepDS ≤ earliestArrDS then
6 B := B ∪ {A}; A := {i};
7 else A := A ∪ {i};
8 latestDepDS := max(latestDepDS, ddococ(i) − tt(ds,oc));

9 return B;

bf 1

5,3

2

15,3

3

25,3

4

47,2

5

70,3

oc 6

30,2

7

57,1

8

62,1

9

80,3

time

ep

Figure 4. Partition of the scheduling given the shown matching.

s.t. (3–7)

depbfi ≤ arrbfi+1 ∀i ∈ S′ \ {n} (18)

disjunctive((depli)i∈S′ , (arrki − depli)i∈S′) ∀(k, l) ∈ P ′

cumulative((arrli)i∈S′ , (depli − arrli)i∈S′ , (1)i∈S′ , capl) ∀l ∈ L \ {bf}

where S′ are the torpedo runs of the sub-problem, P ′ = {(bf, fb), (fb, ds), (ds, oc)},
and disjunctive and cumulative are global constraints modeling unary and non-
unary resources. Note that for each torpedo run i ∈ S, Alg. 1 and 2 provide the
arrival times at bf and eb, and the departure times at oc and eb. In the case of
an emergency trip, we also know depbfi . Due to these pre-assigned times, the CP
model only has to take care of oxygen converter trips from the blast furnace to
the converter.

We employ a sequential search over sub-searches, which represent a location
or a path. Each sub-search branches over the duration of the torpedoes i used
for the location l or the path (k, q), i.e., depli − arrli and arrqi − depki . The most
constrained duration variable is selected first and its smallest possible duration
is assigned to it. The sub-searches are explored in this order ds, (fb, ds), (ds, oc),
oc, (bf, fb), and bf. There are two important ingredients for this search. First,
the first sub-search is objective driven, because it tries to minimize the duration
spent at ds. Second, branching on the durations rather than on the departure or

arrival times keeps the schedule flexible while providing some propagation on the
departure and arrival time variables. Other searches tested, that did not follow
both ingredients, were inferior.

Note that in order to avoid resolving sub-problems from scratch, we cached
all sub-problems and their solution in a hash map.

4.3 Benders Cuts

The scheduling problem can have three possible outcomes. First, it is infeasible.
Second, it is schedulable, but not with the lower bound on the desulfurization
time from the MIP solution. Last, it is schedulable with the same desulfurization
time. Only in the first two cases do we need to create Benders cuts in terms of
the decision variables in the master problem. In the third case, the combined
MIP and CP solution is an optimal solution of the entire problem.

We express the cuts in terms of the variables xio from the MIP problem. Let
oc be the mapping from the MIP restricted to the sub-problem and N ′ the blast
furnace events in the sub-problem.

Infeasibility Cuts The sub-problem is infeasible, which is a direct result of
the mapping. Thus,

∑
i∈N ′ xioc(i) < |N ′| is valid cut, because it forces the MIP

solver to choose a different oxygen converter event for at least one torpedo run.
To strengthen the cut, we rerun |N ′|-times the CP model, but with a small

modification. For each rerun, we remove one torpedo run including the matched
oxygen converter event from the model. If the model is still infeasible then this
run does not contribute to the infeasibility and we can leave it out; otherwise it
contributes to the infeasibility and we reinsert it. The removals are performed
in chronological order of the blast furnace events. At the end of the process,
we obtain a minimal unsatisfiable set of torpedo runs N ′′ ⊆ N ′ leading to the
stronger cut

∑
i∈N ′′ xioc(i) < |N ′′|, which is minimal too. In preliminary testing,

this minimization resulted in an order of magnitude less MIP iterations.
We also investigated more general cuts by relaxing the conditions on the

start time of a torpedo trip instead of removing it completely, but they were not
beneficial for the overall runtime.

Optimality Cuts The sub-problem is schedulable with minimal desulfurization
time β, but the desulfurization time α from the MIP solution is smaller, i.e.,
α < β. In this case, we introduce a new binary variable b for the MIP model, add
the term (β−α) · b to the objective (10), and add the constraint

∑
i∈N ′ xioc(i)−

(|N ′| − 1) ≤ b to the MIP model. The variable b takes value 1 if and only if the
MIP uses the same mapping oc for the sub-problem. In that case, the added
objective term accounts for the difference in the desulfurization time derived by
the CP model. If the variable b takes value 0 then the MIP model is forced to
take a different mapping due to the added constraint and the added objective
term is zero.

4.4 Limited Forward Matchings

The size of the MIP model, i.e., the number of constraints, variables, and the
size of constraints, depends on the number of blast furnace and oxygen converter
events. For example, the objective (12) has a quadratic size of O(nm). For large
problems, the MIP model is so large that the MIP solver runs out of memory
or is extremely slow. A way to reduce the size is to limit the oxygen converter
events to which a blast furnace event can be matched, for example to the 10 next
closest oxygen converter events which it can reach. The same is also done for the
reuse of torpedoes after emergency trip events. Not only does this drastically
shrink the model size, but also significantly speeds up the solving time. The
drawback is that we cannot prove the optimality of the original problem and
the optimal solution of this relaxed problem can be worse than the one from
the original problem. However, from a practical point of view, it might be the
preferred mode because a matching of a blast furnace to an oxygen converter
event far in the future can be seen as not preferable or sub-optimal due to cooling
of the molten metal. In the experiments, we show the sweet spot for the number
of forward matchings.

5 Experiments

We conducted experiments on the ACP 2016 Challenge instances and created
larger ones using the instance generator provided at the ACP Challenge web-
site. All generated solutions were checked using the provided ACP solution
checker. We grouped all instances in the test sets small having 15 instances
with 30 to 500 blast furnace events, comp having 6 ACP challenge instances
with 850 to 2500 blast furnace events, medium having 19 instances with 1000
to 3000 blast furnace events, and large having 3 instances with 10000 blast
furnace events. All instances are available at https://github.com/AdGold/

TorpedoSchedulingInstances. We ran all our experiments on a machine with
an Intel(R) Core(TM) i7-5500U CPU at 2.40GHz and 8GB RAM unless other-
wise stated. The solution was implemented in Python 3.5.2 interfacing Gurobi
7.0.1 using the Python library gurobipy. Gurobi was used for solving the MIP
problem and Chuffed [1] for solving the CP problem. No runtime limit was im-
posed.

Unlimited Forward Matchings Table 1 shows the results on the set comp for
each instance. We list the number of torpedoes (#T), the desulfurization time
spent at ds (Desulf), the total runtime (RT), the percentage of the total runtime
that was used by the MIP solver (MT), the number of iterations (#I), the cache
hit rate for sub-problems (CHR), the number of total sub-problems stores (#SP),
the success rate of sub-problems (SSR), i.e., no cuts needed to be generated, and
the percentage of sub-problems with size 1 (S1), the average size of sub-problems
with size greater than 1 (SAvg), and the maximal size of sub-problems (SMax).
All ACP challenge instances were optimally solved in less than 20 minutes, which

Table 1. Detailed results on comp.

Inst #T Desulf RT MT #I CHR #SP SSR S1 SAve SMax
instance01 4 7695 41s 88% 1 0% 10 100% 70% 264 316
instance02 4 5302 119s 88% 1 0% 43 100% 67% 98 774
instance03 3 27150 415s 97% 1 0% 583 100% 84% 17 123
instance04 3 10676 35s 92% 1 0% 839 100% 84% 2 4
instance05 4 16308 575s 97% 3 50% 1074 99% 83% 14 410
instance06 4 7755 1134s 97% 2 48% 34 98% 62% 237 755

Table 2. Results on each test set excluding infeasible instances.

Inst #T Desulf RT MT #I CHR #SP SSR
small 3.5 362 2s 51% 1.1 3% 26 99.2%
comp 3.7 12481 386s 93% 1.5 16% 431 99.7%
medium 4.4 1224 484s 95% 1.2 4% 170 99.6%
large 4.5 6481 124093s 99% 2.0 31% 848 99.9%

is much quicker than the winning method presented in [8]. The results also reveal
that the MIP solver used the majority of the runtime and the sub-problems had
almost 100% success, which lead to a very low number of iterations. In addition,
most sub-problems were small and only a few contained 100s of blast furnace
events. Note that the nogood learning solver Chuffed was essential for quickly
solving the sub-problems. In particular on larger and infeasible ones, we had to
terminate the process if using Gecode.

Table 2 presents the results on all test sets excluding infeasible instances. The
table shows a subset of columns, but each entry is an average over the number
of feasible instances. The results show a similar picture to the ACP challenge
instances. However, for the large size instances in large, the runtime was more
than 30 hours and we needed to run it on a machine with extra RAM in order
to be able to solve the MIP. The machine used was an Intel(R) Xeon(R) CPU
E5-2660 at 2.60GHz with 128GB RAM which is not practical in most cases.

Limited Forward Matchings Figures 5–7 show the development of the op-
timality gap on the desulfurization time spent, of the percentage of instances
optimally solved, and of the runtime when the limit on the forward matchings
increases. Note that Fig. 7 uses logarithmic scale for the y-axis. The optimality
gap on the desulfurization time spent converges quickly on each test set. Be-
tween a limit of 30 and 40 the last optimal solution was found even on the test
set large. The runtime could be reduced by orders of magnitude for medium
and large scale problems, especially for large scale instances where the runtime
was reduced to less than 10 minutes. All ACP challenge instances were solved
in less than one minute, down from 20 minutes. In order to test the limit of
our method, we created three instances with 50,000 and 100,000 blast furnace
events, respectively. The average total runtime of the 50k instances were below

Figure 5. Optimality gap in desul-
furization time.

Figure 6. Percent of instances
solved optimally.

Figure 7. Total runtime.

20 minutes except for a limit of 7 as shown in Fig. 7. Interestingly, the same
optimal solutions were generated with limits of at least 10. The 100k instances
were solved between 70 minutes and 3.5 hours for a limit of 20.

6 Conclusion

We propose a logic-based Benders decomposition solution method for the indus-
trial problem of torpedo scheduling in the steel production. The master problem
was modeled as a MIP, which takes care of the assignment component of the
problem and the lexicographical objective. The remaining scheduling problem
was split into smaller sub-problems and solved by a CP solver with nogood
learning. This solution method is the first exact one for the torpedo scheduling
problem and is the first one, that could prove the optimality of all instances from
the ACP 2016 Challenge in less than 20 minutes. Thus, it outperforms the pre-
vious state of the art. A limited version of our method, which cannot guarantee
optimality, could reduce the runtime by an order of magnitude and was able to
find optimal solutions very quickly for even larger instances that we created.

Acknowledgments This work was partially supported by the Asian Office of
Aerospace Research and Development grant 15-4016.

References

1. Chu, G.G.: Improving Combinatorial Optimization. Ph.D. thesis, The University
of Melbourne (2011), http://hdl.handle.net/11343/36679

2. Deng, M., Inoue, A., Kawakami, S.: Optimal path planning for material and prod-
ucts transfer in steel works using aco. In: The 2011 International Conference on
Advanced Mechatronic Systems. pp. 47–50 (Aug 2011)

3. Geiger, M.J.: A multi-threaded local search algorithm and computer implemen-
tation for the multi-mode, resource-constrained multi-project scheduling problem.
European Journal of Operational Research 256(3), 729–741 (2017)

4. Geiger, M.J.: Optimale Torpedo-Einsatzplanung – Analyse und Lösung eines
Ablaufplanungsproblems der Stahlindustrie. In: Spengler, T., Fichtner, W., Geiger,
M.J., Rommelfanger, H., Metzger, O. (eds.) Entscheidungsunterstützung in The-
orie und Praxis: Tagungsband zum Workshop FEU 2016 der Gesellschaft für Op-
erations Research e.V., pp. 63–86. Springer Fachmedien Wiesbaden, Wiesbaden
(2017)

5. Hooker, J., Ottosson, G.: Logic-based benders decomposition. Mathematical Pro-
gramming 96(1), 33–60 (2003)

6. Huang, H., Chai, T., Luo, X., Zheng, B., Wang, H.: Two-stage method and appli-
cation for molten iron scheduling problem between iron-making plants and steel-
making plants. IFAC Proceedings Volumes 44(1), 9476 –9481 (2011)

7. Kikuchi, J., Konishi, M., Imai, J.: Transfer planning of molten metals in steel
works by decentralized agent. In: Memoirs of the Faculty of Engineering, vol. 42,
pp. 60–70. Okayama University (2008)

8. Kletzander, L., Musliu, N.: A multi-stage simulated annealing algorithm for the
torpedo scheduling problem. In: Salvagnin, D., Lombardi, M. (eds.) Integration of
AI and OR Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems – CPAIOR ’17. pp. 344–358. Lecture Notes in Computer Science,
Springer International Publishing (2017)

9. Li, J.q., Pan, Q.k.P., Duan, P.y.: An improved artificial bee colony algorithm for
solving hybrid flexible flowshop with dynamic operation skipping. IEEE Transac-
tions on Cybernetics 46(6), 1311–1324 (June 2016)

10. Liu, Y.Y., Wang, G.S.: The mix integer programming model for torpedo car
scheduling in iron and steel industry. In: International Conference on Computer
Information Systems and Industrial Applications – CISIA 2015. pp. 731–734. At-
lantis Press (2015)

11. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

12. Schaus, P., Dejemeppe, C., Mouthuy, S., Mouthuy, F.X., Allouche, D., Zytnicki,
M., Pralet, C., Barnier, N.: The torpedo scheduling problem: Description (2016),
http://cp2016.a4cp.org/program/acp-challenge/problem.html, last accessed:
28 Apr 2017

13. Tang, L., Wang, G., Liu, J.: A branch-and-price algorithm to solve the molten iron
allocation problem in iron and steel industry. Computers & Operations Research
34(10), 3001 – 3015 (2007)

14. Wang, G., Tang, L.: A column generation for locomotive scheduling problem in
molten iron transportation. In: 2007 IEEE International Conference on Automation
and Logistics. pp. 2227–2233 (Aug 2007)

